Reduced heterogeneity of muscle deoxygenation during heavy bicycle exercise.

نویسندگان

  • Ryotaro Kime
  • Joohee Im
  • Daniel Moser
  • Yuanqing Lin
  • Shoko Nioka
  • Toshihito Katsumura
  • Britton Chance
چکیده

PURPOSE This study evaluated heterogeneity of muscle O2 dynamics in a single muscle during bicycle exercise using an eight-channel near-infrared continuous wave spectroscopy (NIRcws) mapping system. METHODS Nine healthy subjects performed bicycle exercise at fixed workloads of 20, 40, 60, 80, and 100% maximal workload for 5 min at each level. Muscle oxygenation in the vastus lateralis (VL) during and after each exercise was monitored using the NIRcws mapping system. Pulmonary O2 uptake and heart rate were monitored continuously during the experiment. Blood samples were taken to measure blood lactate concentration at 30 s after each exercise stage. RESULTS Half time reoxygenation, the time taken to reach a value of half-maximal recovery, was significantly delayed in distal sites compared with proximal sites of VL. Conversely, muscle deoxygenation for all measurement sites increased incrementally with higher exercise workloads, and no significant difference of deoxygenation level showed within each channel. However, relative dispersion of muscle deoxygenation during exercise significantly decreased when the workload increased. Moreover, relative dispersion of muscle deoxygenation between the subjects also decreased with an increase in the workload. CONCLUSION Muscle deoxygenation in a single muscle was more heterogeneous at lower exercise workloads, and variations of the muscle deoxygenation heterogeneity between subjects were greater at lower exercise workloads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of prior heavy exercise on heterogeneity of muscle deoxygenation kinetics during subsequent heavy exercise.

We investigated the effects of prior heavy exercise on the spatial heterogeneity of muscle deoxygenation kinetics and the relationship to the pulmonary O(2) uptake (pVO(2)) kinetics during subsequent heavy exercise. Seven healthy men completed two 6-min bouts of heavy work rate cycling exercise, separated by 6 min of unloaded exercise. The changes in the concentration of deoxyhemoglobin/myoglob...

متن کامل

Unchanged muscle deoxygenation heterogeneity during bicycle exercise after 6 weeks of endurance training.

The purpose of this study was to examine the changes in muscle oxygen saturation (SmO(2)) level and its heterogeneity after 6 weeks of endurance training using multi-channel near infrared spatially resolved spectroscopy (NIR(SRS)). Nine healthy subjects participated in this study (Male = 6, Female = 3, age: 27 +/- 5 years, height: 168.7 +/- 7.4 cm, weight: 62.4 +/- 12.4 kg). The subjects perfor...

متن کامل

Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise.

To test the hypothesis that, during exercise, substantial heterogeneity of muscle hemoglobin and myoglobin deoxygenation [deoxy(Hb + Mb)] dynamics exists and to determine whether such heterogeneity is associated with the speed of pulmonary O(2) uptake (pVo(2)) kinetics, we adapted multi-optical fibers near-infrared spectroscopy (NIRS) to characterize the spatial distribution of muscle deoxygena...

متن کامل

Reduction of O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy

Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two ...

متن کامل

Prior heavy exercise elevates pyruvate dehydrogenase activity and muscle oxygenation and speeds O2 uptake kinetics during moderate exercise in older adults.

The adaptation of pulmonary oxygen uptake (VO(2)(p)) kinetics during the transition to moderate-intensity exercise is slowed in older compared with younger adults; however, this response is faster following a prior bout of heavy-intensity exercise. We have examined VO(2)(p) kinetics, pyruvate dehydrogenase (PDH) activation, muscle metabolite contents, and muscle deoxygenation in older adults [n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medicine and science in sports and exercise

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 2005